

James G. Williams and Jean O. Dickey

Jet Propulsion Laboratory
California Institute of Technology, Pasadena, CA

Acknowledgment: Dale H. Boggs, XX Newhall, J. Todd Ratcliff, E. Myles Standish & others especially the Staffs of CERGA, Haleakaula, and the University of Texas McDonald Observatory

Majors Points

- Introduction
- Recent developments
- Comparison of the Earth and Moon
- Lunar Geodesy
- Lunar Interior studies
- Science Potential from Centimeter toward millimeter Ranging Accuracy
- Concluding Remarks

Introduction

 Lunar tides and rotation are influenced by the interior properties of the Moon.

Three-axis rotation and tides can be sensed by tracking

lunar landers

4 corner-cube retroreflector arrays

Three decades of accurate ranges

Areas of Impact

- Lunar Science
- Gravitational Physics
- Earth Science

Ephemerides and Constants

An Apollo -Era Experiment Still Going Strong!

 Laser Ranges between observatories on the Earth and retroreflectors on the Moon started in 1969 and continue to the present

 4 retroreflectors are ranged: Apollo 11, 14, & 15 sites and Lunakhod 2 rover

Earth-basedObservatories:

- McDonald (Texas)
- OCA (Grasse)
- Haleakala (Hawaii historic data)
- Expected soon! : Matera & Apache Point

Comparison of the Earth and Moon I Earth Moon

- Atmosphere, ocean & life!
- Rotation rapid
 - short period variation linked to atmosphere
- Tidal loading is important
- Non-grav effects are a challenge with short-arc solutions
- Plate motion
- Earthquakes

- No atmosphere, ocean & known life!
- Rotation is synchronous and slow (27.3 days)& not near rotational equilibrium
- Tidal loading is lacking
- Orbit is "quiet" with the largest non-grav effect of 4 mm ingle arc solution for 32 years with an rms of 17 mm
- No plate motion
- Moonquake (small in magnitude)

Comparison of the Earth and Moon II

	Earth	Moon
Radius	6371 km	1737 km
Mean Density	5.51 gm/cm ³	3.35 gm/cm ³
C/MR ²	0.3307	0.3932
Spin Period	1 d	27.3 d
Precession	26,000 yr	18.6 yr
Tilt to Ecliptic	23.44°	1.54°

Comparison of the Earth and Moon

Earth

- Studies of the Earth's interior are advanced
- Solar perturbation are smaller
- Moment of Inertia ~ 0.33 smaller than the value expected from a solid body
- Center of Mass and J₂ variations are geophysical interesting & are under current study!
- Tides on the Earth- Large and complex
- Tidal dissipation Earth's contribution dominates!

Moon

- Moon's interior is less well known -LLR analysis indicates a liquid core
- Solar perturbation are sizable!
- Moment of Inertia = 0.3932 ± 0.0002
 (Konopliv et al., Science, 1998)close to the value expected from a solid body
- No analogy Center of Mass variation
- J 2 time series would be rather ~ constant
- Tidal dissipation Moon's contribution is small
- Tides on the Moon
 - Largest ~ 10 cm; Synchronous rotation keeps angular variation modest; solar tides ~4 mm

Largest Lunar Radial Variations

Interaction Type

Ellipticity

Solar perturbations

Jupiter perturbation

Venus perturbations

• Earth J₂

Moon J₂ & C₂₂

• Earth C₂₂

Lorentz contraction

Solar potential

Time transformation

Solar radiation pressure

Amplitudes

20905 km

3699 & 2956 km

1.06 km

0.73, 0.68 & 0.60 km

0.46 & 0.45 km

0.2 m

0.5 mm

0.95 m

6 cm

5 & 5 cm

4 mm

• Note ratio smallest to the largest = 2 x 10**-10

Lunar Science Questions

What are the properties and structure of the deep interior?

- What are the core properties?
 - Iron or Silicate?
 - Solid or fluid?
 - Does an inner core exist?
- What causes strong tidal dissipation?
- What were the roles of tidal and core dissipation in the thermal and dynamical evolution?
- What stimulates free librations?

CAUSES OF ROTATIONAL VARIATIONS

- Departure from uniform rotation and precession is caused by
 - Static figure, moments of inertia, and gravity field
 - Tidal k₂ and oblateness of fluid-core/solid-mantle boundary
 - Tidal dissipation and dissipation at fluid-core/solid-mantle boundary

Elastic Tides

Love numbers

- Depend on the elastic properties of interior
- Elastic tidal displacement: h₂ & l₂
- Tidal distortion of 2nd degree gravity potential: k₂

Values of k₂

- LLR determines k₂ more accurately from lunar rotation
 - $> k_2 = 0.0266 \pm 0.0027$
- Spacecraft determined values agree
 - $> k_2 = 0.026 \pm 0.003$ (Konopliv et al., Icarus, 2000)
- Simple structural models produce lower values of k₂
 - > Something like partial melt in the deep mantle could bring model results into better agreement with measurements

EVIDENCE FOR A CORE

- Moment of inertia
- Rotation effects
- Magnetic induction
- Ancient magnetized basalts

Elastic Tides

Love numbers

- Depend on the elastic properties of interior
- Elastic tidal displacement: h₂ & l₂
- Tidal distortion of 2nd degree gravity potential: k₂

Values of k₂

- LLR determines k₂ more accurately from lunar rotation
 - $> k_2 = 0.0266 \pm 0.0027$
- Spacecraft determined values agree
 - $> k_2 = 0.026 \pm 0.003$ (Konopliv et al., Icarus, 2000)
- Simple structural models produce lower values of k₂
 - > Something like partial melt in the deep mantle could bring model results into better agreement with measurements

CAUSES OF ROTATIONAL VARIATIONS

- Departure from uniform rotation and precession is caused by
 - Static figure, moments of inertia, and gravity field
 - Tidal k₂ and oblateness of fluid-core/solid-mantle boundary
 - Tidal dissipation and dissipation at fluid-core/solid-mantle boundary

Tidal Dissipation

- Tidal dissipation Q
 - A bulk physical property of the Moon
 - Depends on radial distribution of material Q's
- LLR detects 4 dissipation terms
 - Infers a weak dependence of tidal Q on frequency
 - Surprisingly low Q's (Q_{Moon} ≈ 37 vs Q_{Solid Earth} ≈ 200-600)
 - Location of the low Q material not determined by LLR
- At seismic frequencies
 - Low Q material was found in the deep mantle
 - Suspected to be partial melt

Fluid Core/Solid Mantle Dissipation

- Fluid core
 - Doesn't share axis of rotation of the solid mantle
 - Weakly coupled to precessing mantle
 - Torque due to core-mantle velocity difference dissipates energy
- LLR analysis
 - Several dissipation terms considered in order to separate tidal from core dissipation
 - Yoder's (1995) turbulent boundary-layer theory gives
 - > Fe: R_{core} ≤ 352 km
 - > Fe-FeS eutectic: R_{core} ≤ 374 km

Future - Previews of Coming Attractions

- LLR data from Matera
- New ranging system with improved accuracy and sensitivity (see Tom Murphy presentation)
 - Currently under construction at Apache Point Observatory (UW)
 - 3.5 meter telescope with 1-arcsec typical performance
 - 10 mm single-photon system uncertainty --> mm accuracy quickly achievable
 - Will allow ranging to single corner-cube reflectors
- Advent of a new era in LLR analysis enabling new breakthroughs in many areas

Expected Scientific Advances I

- Einstein's Theory is not a quantum theory & is expected to break down at some small level - may be observed by LLR.
- Improved in relativity parameters
 - Both longer data span and higher accuracy
 - Improved in PPN parameters
 - dG/dt improves as the times squared
- Improved J₂ of Sun expected

Expected Scientific Advances II

- Lunar Interior: Targets from possible detection
 - Fluid-core/solid-mantle boundary oblateness
 - Additional tidal dissipation terms
 - Core moment term
 - Solid inner core effect ?
 - free core nutation?
 - Free libration stimulating events?

Summary

- LLR is an unique ground-based tool for lunar study... only working experiment from the Apollo Program
 - Complements orbiter and seismic experiments
- The best is yet to come!
 - Matera is coming on-line!
 - New Apollo Program at Apache Point (Murphy, UW)under development with 1 mm accuracy goal!!
- LLR data favors fluid core ~ 350 km
 - Longer time (more measurements) & greater coverage (more retroreflectors) will permit detection of smaller signals (oblateness, moment?)
- Heat available from tidal dissipation and turbulent dissipation at the CMB could power early core convection and dynamo
- Major advances expected in Gravitation and Relativity

